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Exploration of nonlinear optical materials by
introducing information science

Kosuke Shirai,a Tomoyuki Tamura, *a Ming-Hsien Lee, *b Bingbing Zhang c

and Masayuki Karasuyama d

A material search scheme is proposed herein to discover novel deep ultraviolet nonlinear optical (NLO)

crystals. The scheme combines first-principles calculations of the optical properties, including

birefringence and second-harmonic generation (SHG) susceptibility based on the density functional

perturbation theory (DFPT), and prediction of the NLO properties using graph neural networks (GNNs).

Systematic comparisons using a common computational code revealed that the DFPT method

reproduced the experimental values better than the conventional sum-over-states (SOS) method. The

accuracy of the scheme for predicting NLO properties was improved by including angle information in

the crystal graph representation. By screening 6660 oxides with bandgaps greater than 4.0 eV in the

Materials Project (MP) database, nine promising NLO crystals with dynamic stability were discovered.

Moreover, new crystals are expected to be identified by extending the range of applications of the

developed scheme from oxides to nitrides and sulfides.

1. Introduction

Nonlinear optical (NLO) second-harmonic generation (SHG)
crystals of various wavelengths are important for frequency
conversion in all-solid-state lasers, and are widely used in
scientific and industrial applications.1,2 These crystals are
classified according to their operating wavelengths, ranging
from the ultraviolet (UV, 200–400 nm)/deep ultraviolet (DUV,
o200 nm) to middle- and far-infrared (vis-NIR, 0.4–3 mm)
regions. NLO crystals that operate efficiently in the DUV region
are core components of frequency conversion to generate a
DUV laser, which plays an important role in cutting-edge laser
technology and fundamental science.3 Therefore, the explora-
tion of new materials with suitable NLO properties is essential
to meet the growing demands in this field.3–7

Multiple properties of NLO crystals should be simulta-
neously optimised. These include a wide bandgap (Eg), large
enough SHG response (dij = wij

(2)/2), and large birefringence
(Dn). The recent introduction of computational science has
promoted efforts to reduce the number of experiments
required. Databases of properties calculated using density

functional theory (DFT), such as the materials project (MP)8

and the open quantum materials database (OQMD),9 have been
developed for the predictive identification of novel crystals with
desired properties. Although physical properties such as Eg, dij,
and Dn can be calculated using DFT, there is no database with
sufficient DFT calculations for dij and Dn. The high-throughput
calculation (HTC) screening of NLO crystals using their optical
properties has been reported for borates,10 germanates,11 and
silicates.12 The application of machine learning (ML) frame-
works in materials science has attracted considerable attention
in recent years, and the screening of NLO crystals by combining
HTC and ML has been reported.13

The NLO susceptibility can be calculated using the sum-
over-states (SOS) method as a straightforward extension of the
band structure and density-of-states calculations within DFT.
In the SOS method, the momentum matrix elements of the
valence and conduction bands must be calculated and used in
the band summation formalism.14,15 Recently, optical property
calculations based on the density functional perturbation the-
ory (DFPT) have become available within the same CASTEP
code.16 Therefore, the two methods and experiments can be
directly compared.17 The HTC of the NLO susceptibility and
dielectric tensor of 579 inorganic semiconductors were
performed18 based on the DFPT using the ABINIT code.19 In
this study, the data were systematically compared with previous
high-throughput results. However, the computational cost of
the DFPT method is significantly higher than that of the SOS
method, making the application of the former to HTC screen-
ing resources demanding.
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The combination of HTC and ML can reveal fundamental
structure–property relationships between materials and pro-
vide an extensive chemical space for exploring new materials
at a low computational cost. Traditionally, prediction methods
have been based on general regression methods, such as linear
regression, support vector machines (SVM), and random forest
regression (RFR), using structural and compositional descrip-
tors. New models such as deep learning using universal atomic
graph representations have been developed. The application of
the former regression to NLO crystals for ML screening has been
reported;13 however, the NLO properties were calculated using
the standard SOS method. Furthermore, the DFPT method is
several times more computationally expensive than the SOS
method, and there are no reported examples of ML screening.

In this study, new NLO crystals that satisfy the required Eg,
dij, and Dn were searched by combining the HTC of DFPT
optical property calculations with ML predictions based on
atomic graph representations. All the oxides registered in the
crystal database were comprehensively screened for NLO
crystals.

2. Computational methods

A process flow for exploring NLO materials was proposed, in
which optical property calculations based on DFPT and ML
were combined (Fig. 1). dij and Dn were determined via pre-
dictive modelling and applied to the search for NLO crystals to
reduce the search time. The predictive modelling of the NLO
properties consists of three steps: (1) acquisition of crystal
structure data, (2) HTC of dij and Dn, and (3) ML prediction
of dij and Dn. The process for screening the NLO materials
consists of five steps: (4) retrieving candidate structures for
exploration, (5) screening based on Eg, (6) determination of the
non-inversion centre symmetry (NICS), (7) screening based on
the predicted dij and Dn, and (8) high-precision calculation of

the optical properties of the screened crystal structures using
the DFPT method.

CASTEP code16 was used to calculate the self-consistent field
(SCF), optical parameters, and phonons with norm-conserving
pseudopotentials. The Perdew–Burke–Ernzerhof (PBE) functional20

within the generalised gradient approximation (GGA) was used for
material screening and the Heyd–Scuseria–Ernzerhof (HSE06)
hybrid functional21 was used for high-precision calculations after
material screening. The scissor operator, which was set as the
difference in the bandgap between the GGA and HSE, was used
to correct the SHG coefficients. The plane-wave energy cutoff was set
to 800 eV. SCF calculations were performed with a convergence
criterion of 1 � 10�6 eV per atom on the total energy. The
Monkhorst–Pack k-point separation was set as 0.07 Å�1 in the
Brillouin zone for the SCF and 0.04 Å�1 for the calculation of the
optical parameters and phonons.

Based on the 2n + 1 theorem,22 the derivative of the 2n + 1-th
order of energy with respect to the perturbation (which can be
an atomic displacement or electric field) depends only on the n-
th order perturbed wavefunctions. Within the DFPT framework,
the conjugate-gradient minimisation algorithm23,24 can be
used to find solutions iteratively with high efficiency. In the
birefringence (Dn) calculation, the refractive indices are deter-
mined by taking the square root of the three (diagonal) ele-
ments of the dielectric tensor on the principal axis. (As long as
the crystal is properly oriented, as is usually the case with
symmetry-annotated data from popular crystal structure data-
bases, the calculated dielectric tensor is already diagonal). The
dielectric functions and dij are related to the second- and third-
order energy perturbation with respect to the external electric
field; therefore, a search of the first-order (n = 1) wavefunction
only is sufficient for both, which is why the scheme is also
called the ‘‘Linear Response’’ method. CASTEP implements a
linear-response DFPT that supports the GGA exchange–correla-
tion functional.17 The formalism suggested by Miwa25 was
adapted for the NLO susceptibility coefficient, dij.

Recently, methods based on crystal graph convolutional
neural networks (CGCNNs)26 have been widely utilised to expli-
citly describe the local environment of crystals through graphical
representations and predict the properties of solids and mole-
cules. However, conventional graph neural networks (GNNs)
used for crystalline systems, such as CGCNNs, do not encode
interatomic angle data. The linear and nonlinear optical proper-
ties considered in this study are expected to be sensitive to three-
body-term information, such as the bond angles between atoms
and local polyhedral anisotropy. In contrast, the atomic line
graph neural network (ALIGNN) approach,27 which explicitly
represents the bond angles as edges of line graphs, provides a
general formulation that can be applied to periodic crystal
graphs. It has been reported that explicitly including angle-
based information in ALIGNNs and expressing the importance
of such many-body interactions improve the accuracy of property
predictions. Therefore, in this study, ALIGNNs that take the
angle term into account are used to predict dij and Dn. The
angle dependence of these property predictions is also discussed
in comparison with those of the CGCNN.

Fig. 1 Schematic of exploration of nonlinear optical crystals based on
machine learning. (1) Acquisition of crystal structure data, (2) high-
throughput calculations of dij and Dn, and (3) optimisation of parameters
of the ML prediction model for dij and Dn. (4) Screening and retrieval of
candidate structures for exploration (5) based on Eg, (6) non-inversion
center symmetry, and (7) predicted dij and Dn. (8) Calculation of optical
properties with high precision using the DFPT method for screened crystal
structures.
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3. Results and discussion
3.1. Prediction of NLO properties

To clarify the differences in the methods of calculating the
optical properties, the DFPT method was used to calculate dij

and Dn for ten representative NLO crystal structures for which
the experimental values were obtained. The dij coefficient
represents the maximum of |wij

(2)|/2 and was corrected using
a scissor operator. The results are shown in Fig. 2. Here, the
values calculated using the SOS method with scissor correction
and experimental values were obtained from a published paper on
NLO crystals (Table 1 in Ref. 10). The detailed values are presented
in Table S1 (SI). The values obtained by LDA-based DFPT
calculations18 are also listed. The mean absolute percentage errors
(MAPEs) for the optical calculations using the SOS and DFPT
methods with scissor correction compared to the experimental
values were 32.8 and 16.7% for dij and 32.0 and 26.3% for Dn,
respectively. In the SOS formalism for calculating dij,

14,15 the band
energy differences between the valence and conduction bands
appear in the denominator. Therefore, an underestimation of the
band gap inevitably leads to an overestimation of dij. Compared
with the experimental values, the mean percentage errors (MPEs)
of the band gaps obtained using the GGA and HSE functionals
were �28.8% and +3.1%, respectively. Within the SOS framework,
it has been demonstrated that the application of scissor correction
brings dij into good agreement with experimental values.10 For
GaAgS2, GaAgSe2, and ZnGeP2, which exhibit large dij values, LDA-
based DFPT calculations overestimate the experimental results by
more than 50%. In contrast, the DFPT calculations with scissor
correction performed in this study showed deviations of no more
than 16% from the experimental results for the three materials.
Thus, scissor correction was demonstrated to be effective within
the DFPT framework, yielding dij values that are closer to the
experimental values than those obtained using the SOS method
with scissor correction. As confirmed for borates, the dij value
decreased markedly as the band gap increased.10 This implies that
the impact of the bandgap underestimation diminished as the
band gap increased. Consequently, in the DUV region, the dij value
is expected to be small, and the absolute error relative to the
experimental value remains limited.

A total of 369 borate and germanate structures from pre-
vious papers10,11 were selected for HTCs. Structural data for

these crystals were obtained from the Inorganic crystal structure
database (ICSD)28 and preliminarily screened for centre-of-
inversion symmetry. Disordered and incomplete structures such
as those of solid solutions with disordered positions and struc-
tures containing positionless H atoms were excluded. For these
369 structures, high-throughput optical property calculations
were performed using the DFPT method to obtain the dij and
Dn values. During the preparation of this manuscript, an in-
depth comparison of the birefringence determined using the
SOS and DFPT methods was published by one author.29

The crystal-system classification of dij and Dn is shown by
the violin diagram in Fig. 3(a) and (b). The distribution of these
369 crystal structures covers the trigonal, triclinic, tetragonal,
orthorhombic, monoclinic, and hexagonal systems; hence, the
dataset can be regarded as reasonable training data. Most of
the birefringence (Dn) values in the dataset are less than 0.1.
This bias in the data has a significant potential to affect the
accuracy of predictions. Therefore, the birefringence on a
natural logarithmic scale (ln(Dn)),13 for which the dataset is
closer to a normal distribution, was used as a label for the ML
predictions to improve the results of the ML model. The data
distribution of the dij is also similar to that of Dn; therefore, a
logarithmic transformation was performed. Data with dij and
Dn values close to zero were excluded. Ultimately, 287 struc-
tures for dij and 246 structures for Dn were employed in the
regression prediction. The respective data distributions are swn
in Fig. 3(c) and (d). The corresponding conversions from the
logarithmic to linear scale are shown in Fig. S1.

A regression model based on a GNN was constructed using a
crystal graph as the input and dij and Dn as objective variables.
The training and test data were randomly divided in an 8 : 2
ratio. CGCNN, which contains information on elements and
distances, was applied to the crystal graphs along with ALIGNN,
which contains information on the angles, elements, and
distances. The regression conditions are listed in Table S2.
The MAE transitions for dij and Dn during the learning process
of CGCNN and ALIGNN are shown in Fig. S2. When the number
of optimisation epochs was set to 200, the MAE of the test data
for ln(dij) was 0.53 for CGCNN and 0.47 for ALIGNN. Mean-
while, the MAE for ln(Dn) was 0.41 and 0.35 for CGCNN and
ALIGNN, respectively. Fig. 4 presents a comparison between the
predicted and calculated log-scaled values for the training and
test data obtained using CGCNN and ALIGNN. The corres-
ponding conversions from the logarithmic to linear scale are
shown in Fig. S3. Taken together, these results demonstrate
that the regression performance of ALIGNN is superior to that
of CGCNN. Most of the test data were accurately predicted,
although outliers were present. The outliers can be attributed
to extrapolation due to a lack of training data. Further valida-
tion is required to improve the accuracy of the prediction by
increasing the amount of training data.

3.2. Screening of NLO materials

NLO crystals were screened using the predictive model for dij

and Dn, which was constructed as described above. The screen-
ing conditions are shown in Fig. 5. As mentioned above, it is

Fig. 2 Comparison of (a) dij and (b) Dn calculated using the SOS and DFPT
methods with experimental values.
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well-established that DFT-GGA underestimates the bandgap by
approximately two-thirds. Because the wavelength of DUV light
(200 nm) corresponds to 6.2 eV, two-thirds of this value is
approximately 4.1 eV. Accordingly, the bandgap screening
threshold for DFT-GGA was set to 4.0 eV. A total of 6660 oxide
materials with bandgaps greater than 4.0 eV can be found in the
MP database. A total of 2504 structures with non-inversion
centre symmetry were retained based on the space group of
the crystals. These structures were transformed into crystal
graphs, and dij and Dn were predicted. For screening DUV NLO
crystals, thresholds of dij 4 0.39 pm V�1 and Dn 4 0.06 have
typically been employed.10 However, as demonstrated above, the
predicted values for dij and Dn were systematically overesti-
mated. Therefore, taking the experimental value of
dij = 1.23 pm V�1 for b-BaB2O4 as a reference, we adopted revised
thresholds of dij 4 2.0 pm V�1 and Dn 4 0.05. Based on these
predictions, 155 structures were retained.

The band gaps of the screened structures were calculated.
This step is usually unnecessary; however, incorrect data may exist
in the MP database in rare cases, for example, owing to a lack of
reference papers. To eliminate such data, crystal structures with a
bandgap of 4.0 eV or greater were selected using DFT calculations
employing GGA functionals. An error of �0.2 eV was allowed, and
59 crystal structures were screened. Using the DFPT method, the

optical parameters were calculated for these crystal structures to
evaluate the values of dij and Dn with good accuracy. The predicted
and calculated values of log-scaled dij and Dn for the 59 screened
structures are plotted in Fig. 6. For comparison, the predicted and
calculated values of non-log-scaled dij and Dn are provided in Fig.
S4. The predicted values of both dij and Dn were overestimated,
indicating unsatisfactory prediction accuracy, which is likely attri-
butable to the lack of training data. Nevertheless, given that the
screening targets are crystal structures with inherently high dij and
Dn, such overestimations can be regarded as acceptable.

The dij and Dn values obtained by DFPT calculations for the 59
screened crystal structures are plotted in Fig. 7. Defining the screen-
ing criteria dij 4 1� KH2PO4 (KDP) = 0.39 pm V�1 10 and Dn 4 0.04,
13 structures were found to meet the criteria. Phonon calculations
were also performed to assess the dynamic stability of the crystal

Fig. 3 Violin plot grouped by different crystal systems depicting distribu-
tions of (a) dij and (b) Dn calculated using the DFPT method. Histogram and
density curves representing the distributions of calculated (c) log-scaled dij

and (d) log-scaled Dn.

Fig. 4 Comparison between the log-scaled values predicted by CGCNN
and ALIGNN and the corresponding calculated values. Panels (a) and (c)
show dij, while panels (b) and (d) show Dn.

Fig. 5 Conditions for screening NLO materials. The labels are the same as in Fig. 1.
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structures and verify the presence of negative modes. Consequently,
nine structures with dynamic stabilities were identified. The phonon
dispersion spectra of these structures are presented in Fig. S5–S7.

The physical properties of nine screened structures were
determined using high-precision calculations. The bandgap was
evaluated by band calculations using the HSE functional, and dij

and Dn were determined by DFPT calculations with scissor correc-
tion. The results are summarised in Table 1. When the accuracy of
the calculations increased, a small number of crystals did not
satisfy the screening criteria. The structures identified in this study
can be classified into three main types: (a) silicon oxynitride, (b)
transition-metal oxides, and (c) arsenic sulfide crystals.

3.3. Screened materials

3.3.1. Silicon oxynitride crystals
3.3.1.1. Si2N2O and LiSiNO. As shown in Fig. 8, the crystal

structures of the silicon oxynitrides consist of a Si tetrahedron

composed mainly of nitrogen and oxygen, which were identified
experimentally. Both crystals exhibit no negative phonon modes
and demonstrate favourable NLO properties, suggesting that
silicon oxynitride-based crystals are promising NLO crystals with
dynamic stability. However, Si2N2O and LiSiNO have recently
been reported as good candidates for NLO materials that are
active in the UV range.12 Therefore, the results indicate the
usefulness of the material search scheme developed in this
study, although it did not lead to the discovery of new materials.

3.3.1.2. Transition metal oxide crystals. Six transition-metal
oxide crystal structures were also screened. These crystals are
composed of transition metals such as Y, Sc, Hf, and Nb
(Fig. 9), where most of the structures were obtained from
first-principles calculations.

3.3.1.3. Y5O4F7. This metal oxide crystallises in the mono-
clinic Pc space group and comprises five different yttrium
polyhedra composed of oxygen and fluorine atoms. Although
the birefringence is reduced by scissor correction, both the
bandgap and SHG coefficient are sufficiently high to meet the
criteria.

3.3.1.4. Y6O5F8. This compound crystallises in the triclinic
P1 space group and consists of six different yttrium polyhedra
composed of oxygen and fluorine atoms. The maximum SHG
coefficient, bandgap, and birefringence are �1.23 pm V�1, 6.93
eV, and 0.078, respectively, making it a promising NLO material
with a good bandgap, which satisfies all NLO criteria.

3.3.1.5. BaHf(BO3)2. This compound crystallises in the tri-
clinic R3c space group, with 6-coordinated Ba atoms and 8-
coordinated Hf octahedra linked by BO3 groups; here, parallel
coordination of the BO3 groups with the b axis is characteristic.
This is the only one of the six transition-metal oxide structures
discovered in this study that has been identified experimen-
tally; although the SHG coefficient is reduced by scissor

Fig. 6 Plots of predicted and calculated (a) log-scaled dij and (b) log-
scaled Dn for the 59 screened structures.

Fig. 7 Calculated dij and Dn for 59 screened structures. The orange dots
indicate the 13 crystals satisfying the criterion values of dij 4 0.39 pm V�1

and Dn 4 0.04.

Fig. 8 Crystal structures of (a) Si2N2O and (b) LiSiNO.

Table 1 Calculated parameters for nine screened crystal structures

No. Formula MP-ID SG Eg(eV) GGA/HSE Dn/d(2)
ij (pm V�1)

a1 Si2N2O 4497 Cmc21 5.10/6.74 0.094/d13 = d35 = 0.89
a2 LiSiNO 6015 Pca21 5.33/6.50 0.108/d13 = d35 = 0.41
b1 Y5O4F7 675 109 P1c1 4.55/6.39 0.023/d33 = �3.13, d31 = d15 = 2.89, d22 = �2.66
b2 Y6O5F8 676 605 P1 4.94/6.93 0.078/d14 = d25 = d36 = �1.23, d11 = �0.63
b3 BaHf(BO3)2 1 105 495 R3c 4.34/6.16 0.121/d33 = 0.24
b4 YScSi2O7 1 207 607 C121 4.51/6.53 0.045/d32 = d24 = 0.49, d31 = d15 = �0.48
b5 Hf3GeO8 1 212 158 I%42m 4.34/6.14 0.077/d22 = �3.92, d13 = d35 = �0.48, d11 = �2.64
b6 NaHfScO4 1 220 764 Pmc21 4.03/6.18 0.123/d12 = �0.77, d23 = d34 = 0.48
c1 As2SO6 27 230 P21212 4.21/5.57 0.213/d14 = d25 = d36 = 0.78
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correction, BaHf(BO3)2 has a bandgap of 6.16 eV and large
birefringence of 0.121.

3.3.1.6. YScSi2O7. This compound crystallises in the mono-
clinic C121 space group, with 6-coordinated Y atoms sharing
corners with six equivalent SiO4 tetrahedra to form a distorted
YO6 pentagonal pyramid with three equivalent ScO6 octahedra.
It is a promising material that satisfies all NLO properties.

3.3.1.7. Hf3GeO8. The compound crystallises in the tetrago-
nal I%42m space group and consists of eight O atoms, Hf atoms
bonded in a distorted body-centred cubic structure, and Hf
atoms bonded in a geometric structure connected to a tetra-
hedral GeO4 group. The maximum SHG coefficient, bandgap
and birefringence of �3.92 pm V�1, 6.14 eV, and 0.053, respec-
tively, make it a promising material that satisfies all NLO
properties. This crystal is not among the ones screened by the
high-throughput computational screening of germanates.11

3.3.1.8. NaHfScO4. This compound crystallises in the orthor-
hombic Pmc21 space group and consists of a Hf octahedron and
a Sc octahedron linked to an O atom, a Na atom with seven
coordination positions, and six O atoms that share edges and
corners. The maximum SHG coefficient, bandgap, and birefrin-
gence are �0.77 pm V�1, 6.18 eV, and 0.123, respectively,
making it a promising NLO material with a large birefringence.

3.3.2. Arsenic sulfide crystals
3.3.2.1. As2SO6. The structure crystallises in the orthorhom-

bic P21212 space group and consists of a S tetrahedron with four
O atoms; the As atoms are connected to form a triangular
pyramid composed of three O atoms, as shown in Fig. 10(a).
The crystal structures were determined experimentally. The
values of Eg, dij, and Dn are 5.57 eV, 0.78 pm V�1, and 0.213,
respectively, making As2SO6 a promising NLO material with a
very high Dn value, although Eg is slightly smaller than 6.2 eV (=

200 nm) in the DUV region. However, as the structure contains
As atoms, the safety of the material must be considered.

To search for alternative materials with similar structures,
inorganic crystals in the same space group (P21212) as As2SO6 were
investigated using the MP database, where the carbonitride crystal
system KLaSi(CN2)4 (mp-567129) showed high NLO properties. The
crystal structure is shown in Fig. 10. This crystal, called tetracya-
namidosilicate, is an experimentally identified inorganic crystal in
which nitrogen-coordinated cations are linked via carbon. The
calculated Eg-GGA, dij, and Dn are 4.02 eV, 1.02 pm V�1, and
0.34, respectively. KLaSi(CN2)4 has a high Dn, similar to As2SO6.
Although KLaSi(CN2)4 was not included as a screening target in this
study because it is not an oxide, promising materials are expected
to be discovered in the future by expanding the compositional
range to include nitrides and carbon-based materials.

4. Conclusions

A material search scheme was proposed for the discovery of
novel DUV NLO crystals by combining first-principles calcula-
tions of the optical parameters (birefringence and SHG
susceptibility) based on DFPT and the prediction of NLO
properties based on GNNs. Systematic comparisons using a
common computational code revealed that the DFPT method
reproduced the experimental values better than the SOS
method. The accuracy of the scheme for predicting the NLO
properties was improved by including angle information in the
crystal graph representation. A total of 6660 oxides with Eg

greater than 4.0 eV were selected from the MP database, among
which nine were promising NLO crystals exhibiting dynamic
stability. The present study focuses on oxides, and new crystals
are expected to be unearthed by extending the range of applica-
tions of the developed scheme to nitrides and sulfides. The
proposed material design scheme is expected to accelerate the
rational design of NLO materials as well as various functional
materials, thereby contributing to the realisation of desirable
composite properties.
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